
Plomino Documentation
Release 1.17

Eric BREHAULT

Jul 11, 2017

Contents

1 About this Document 3

2 Introduction 5

3 Background and highlevel overview 7
3.1 Positioning . 7
3.2 A closer look . 8
3.3 Grouping documents . 8
3.4 Security . 9
3.5 Barely-repeatable processes, workflow . 9
3.6 Workflow . 9
3.7 Use cases . 10
3.8 Digging deeper . 10
3.9 Ideas for improvement . 12

4 Installation 13
4.1 Prerequisites . 13
4.2 Deploy Plomino in your Plone site . 13
4.3 Deploy Plomino development version . 14

5 Concepts 15
5.1 Plomino database . 15
5.2 Design . 15
5.3 Forms . 15
5.4 Documents . 16
5.5 Views . 16

6 Build a simple Plomino application 19
6.1 Create a Plomino database . 19
6.2 Add a form . 20
6.3 Create the layout and add fields . 20
6.4 Use the form . 24
6.5 Explore the database design . 27
6.6 Change the document title . 28
6.7 Change the document id . 29
6.8 Add a view . 29
6.9 Add a view manually . 30

i

6.10 Add more views . 34
6.11 Dynamic view . 35
6.12 Add a search form . 36
6.13 About and Using pages . 37

7 Access control 39
7.1 Standard Plomino access rights . 39
7.2 Generic users . 39
7.3 Roles . 40
7.4 Manage the access rights . 40
7.5 Application-level access control . 42

8 Fields reference 45
8.1 General parameters . 45
8.2 Field indexing . 46
8.3 Type-specific parameters . 48

9 Features reference 59
9.1 Formulas . 59
9.2 Actions . 62
9.3 Fields . 64
9.4 Forms . 70
9.5 Views . 77
9.6 Database . 78
9.7 Plomino URLs . 82
9.8 Agents . 83
9.9 Resources . 84
9.10 i18n support . 84
9.11 Caching . 85
9.12 Plomino Element Portlet . 86
9.13 Extending Plomino with plugins . 87

10 Plomino class reference 89
10.1 PlominoDatabase . 89
10.2 PlominoDocument . 90
10.3 PlominoForm . 91
10.4 PlominoView . 91
10.5 PlominoIndex . 92
10.6 PlominoUtils . 92
10.7 PlominoAgent . 94

11 Indices and tables 95
11.1 Glossary . 95
11.2 Automatically generated TODO list . 96

ii

Plomino Documentation, Release 1.17

Author Eric Brehault <eric.brehault@makina-corpus.com>

Contributor Jean Jordaan <jean.jordaan@gmail.com>

Contact eric.brehault@makina-corpus.com

Copyright This document is published under the Creative Commons by-sa-nc licence.

Contents:

Contents 1

mailto:eric.brehault@makina-corpus.com
mailto:jean.jordaan@gmail.com
mailto:eric.brehault@makina-corpus.com

Plomino Documentation, Release 1.17

2 Contents

CHAPTER 1

About this Document

This document is aimed at Plomino application designers and managers.

This document is published under the Creative Commons by-sa-nc licence.

You are free:

• to Share: to copy, distribute and transmit the work

• to Remix: to adapt the work

under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way
that suggests that they endorse you or your use of the work).

• Non commercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under
the same or similar license to this one.

3

http://creativecommons.org/licenses/by-nc-sa/3.0/

Plomino Documentation, Release 1.17

4 Chapter 1. About this Document

CHAPTER 2

Introduction

The main objective of Plomino is to provide the ability to build business-specific applications in Plone without requir-
ing development of Plone extension products.

Plomino allows you to create forms, to use those forms to view or edit structured contents, to filter and list those
contents, to perform search requests, to add business-specific features and to automate complex processing – all
entirely through the Plone web interface.

Note: Plomino is widely inspired by the IBM Lotus Domino (tm) commercial product, it reproduces its main concepts
and features, and it uses its terminology (which sometimes overlaps with the Plone terminology).

Plomino is used in deployments with over 50 000 documents. Users include the UN, European banks and local
government organizations.

Most Plomino users are Plone users who are not Plone developers (sometime just beginners, and sometimes experi-
enced integrators), who, once they have built a nice website with Plone, find that specific features are not available
using the standard Plone modules.

A smaller number are actual Plone developers who appreciate Plomino because it is extremely flexible or because they
want their customers to be more autonomous once they have delivered their work.

Plomino derives various benefits from existing as a Plone add-on.

In the first place, Plone provides a wonderful framework, including key components for Plomino (ZCatalog, Zope
security, PythonScripts, ...), and Plone also provides very useful features (CMS features, user management, skinning,
etc.).

But the main advantage is the pluggability of Plone. Plone is the only major framework which provides real plugga-
bility. This is a wonderful advantage because it allows Plomino to benefit from excellent Plone products very easily.

Pluggability vs. extensibility

For more on this topic, see this excellent post by Chris McDonough on Pyramid’s extensibility, along with Paul
Everitt’s commentary. Eric Bréhault (in French) provides a wider perspective.

5

http://groups.google.com/group/pylons-discuss/msg/b19df600ddb8be3f
http://pauleveritt.wordpress.com/2011/01/14/chris-mcdonough-on-pluggable-apps/
http://pauleveritt.wordpress.com/2011/01/14/chris-mcdonough-on-pluggable-apps/
http://www.makina-corpus.org/blog/quel-prix-devient-vraiment-pluggable

Plomino Documentation, Release 1.17

6 Chapter 2. Introduction

CHAPTER 3

Background and highlevel overview

Plomino is an interesting extension of Plone.

In a time when Plone is narrowing its focus on document-based CMS, Plomino offers in-Plone application-building.

In a time when through-the-web, ZODB-resident scripting has fallen out of favour, Plomino does everything through
the web.

It has an interesting ancestry too: the name and some core ideas hark back to Lotus Domino (https://en.wikipedia.
org/wiki/IBM_Lotus_Domino), which besides a lot of other things was a form-based application builder backed by an
object database, from the early 90’s. As such, in some respects it’s a conceptual forerunner of Zope.

Plomino trades a number of core Plone concepts for flexibility and simplicity. In the first place, it offers only one type
of content: a generic Document type. Secondly, it eschews containment for documents, using Plone’s containment
system only for its own simple application structure. Consequently, Plone’s cut/copy/paste operations don’t make
sense for Plomino documents.

A Plomino application or database is a single container which holds Forms, Views, and Agents. It also has a catalog, a
documents container for all documents, and a resources container for script libraries. That’s it.

Positioning

Plomino is a through-the-web application builder, hence:

• It is not a through-the-web content-type builder like Dexterity, which is perfect for creating custom con-
tent types that stick to the standard content management scenario. Plomino allows to implement any custom
scenarios.

• It is not just a form generator like PloneFormGen, as Plomino provides all the services (data storage, search,
automation, import/export, etc.) to build an entire application. Regarding form generation itself, a major differ-
ence with PloneFormGen is that Plomino allows to edit the form layout entirely, while PloneFormGen uses a
fixed pre-defined form layout.

7

https://en.wikipedia.org/wiki/IBM_Lotus_Domino
https://en.wikipedia.org/wiki/IBM_Lotus_Domino
http://plone.org/products/dexterity
http://plone.org/products/ploneformgen

Plomino Documentation, Release 1.17

A closer look

Forms contain Fields and Actions, and Views contain Columns and Actions.

When you start to build a Plomino application, you normally start by adding Forms. When you add a form, the
creation page resembles a normal Plone Page, with a large richtext edit field. Here, you simply type out the layout of
the form. Add tables, images, explanatory text, whatever you need. The one departure: you also create fields, actions,
hide-whens, subforms, accordions, and cache-zones on the layout using Plomino-specific TinyMCE buttons.

This allows very quick prototyping of forms, and it broadens participation in form design. This is not equally valuable
for all applications, or for all stages of an application’s lifecycle, but it can be very useful.

As you add fields and so on, Field and Action instances are added to the Form. These are matched with layout
elements according to id: the ids match elements on the layout, and the widget of the field or action is substituted for
the placeholder on the layout when the form is viewed.

When viewing the form, a user can fill in the field widgets and submit the form using the default Save action. At this
point, a Document is created containing Items that correspond to the Fields on the Form.

Follow me closely here: if you create a Book form with Title and Author fields, this will create documents with
Title and Author items. Another form, say Trip, may create documents with items like Departure, Destination and
Passenger. Documents are simply generic bags of items. They are both created and viewed using forms, that render
the items found on the document using the corresponding fields on the form. (Note that a given form may not have
fields for all the items on the document, and there may be fields that do not correspond to items but that render values
based on other items or other documents.)

With Plomino, you have to build the additional structures you need using documents and items as building blocks.

While creating documents, it may be useful to think of a Form in terms of a rubber stamp. When you use it to create a
document, it stamps its items on that document, at that moment. If you change the Form afterwards, the items on the
documents created previously will still be the same: you may need to re-save documents with the latest version of the
form if you need their items to be updated.

While viewing documents, you are also using forms. At this point it’s more useful to think of a Form in terms of a
template or mask: the form will render those items that correspond to its fields (there may be more items than fields;
these may be ignored, or the formula of one field may look at multiple items).

When you use a Form to create or edit a document, it stores its name in a Form item on the document, so you could
grab all books by looking for the documents where the Form item is Book. However, Plomino doesn’t require that
you always use the Book form for editing those documents. If you added a CatalogBook form with fields like
Dewey and ISBN number, for the use of users doing cataloging, and go over the book documents using this form,
their Form items will change to CatalogBook. Therefore one common pattern is to include a doctype field
on forms used to create documents (if, indeed, your Plomino application requires the concept of different types of
documents).

Similarly you could include an item referencing a parent document if you wanted to mimic containment, but this is
only one possible way of structuring your data.

Grouping documents

Forms are built around individual Documents. For dealing with Documents in aggregate, Plomino offers Views. The
documents in a view are all the documents for which the selection formula (Python Script) on the View evaluates as
‘‘True‘‘. Views contain Columns, that are calculated for each matching document. They often correspond to items on
documents, but can be any value returned by a formula. That is, each record in a view corresponds to a Document, but
the values of columns in the record need not come from that Document.

8 Chapter 3. Background and highlevel overview

Plomino Documentation, Release 1.17

Views are updated as documents are created or edited, but depending on the formula and the number of documents,
views can be expensive to refresh from scratch.

Besides grouping documents, views are also useful for browsing purposes. They allow paging and filtering, and can
evaluate a formula to determine which Form should be used for viewing documents opened from the view (that is,
a view that lists books for lending could show documents using a Checkout form, while a view that lists books with
incomplete metadata could use the CatalogBook form).

Security

• All the normal Plone roles and permissions pertain to Plomino.

• In addition, Plomino offers a hierarchy of roles that govern management of the application, creation and editing
of Forms and other design aspects, creating and editing documents using the supplied forms, and accessing the
database.

• Finally, Plomino allows creation of user-defined roles that can be assigned to Plone principals, and need to be
checked for at application-level in the Plomino application.

As such, security is to some extent leaky, depending on application authors to remember the appropriate checks in all
relevant forms. Also, the form to be used for rendering a document can be passed as an URL parameter, so someone
could sneak a look at a document using a form that you didn’t intend, as can form values, and various other API games.
This can be mitigated by factoring out certain checks to a common script library and including them in all forms, but I
think you get the point — Plomino does not chase the grail of a bulletproof environment. You need to think about what
is enough security, and not deploy Plomino applications with data inappropriate to the context (i.e. deploy applications
with sensitive data to closed groups).

Barely-repeatable processes, workflow

There are countless cases of people, businesses or projects switching bug tracking systems to find one that fits their
way of working. And a bug tracking system is a relatively simple domain! Most processes are much more complicated.
Does this really make sense? A bug tracking system includes implementation choices and policies regarding database
backend, templating mechanism, authentication sources, and so forth and so on, in addition to the business rules of
bug tracking. It’s a shame that everything else has to change if you all you really want to change are the business rules.

Any application deployed in a real-world environment ends up having to deal with local variations, transient changes,
emerging requirements, and having the business change in response to the application being implemented.

Of the various ways in which to confront this reality, one method is to use an architecture that provides simple building
blocks. The architecture can remain stable across deployments and evolve in a controlled fashion, while the various
deployments of the application can be tweaked in place, branching and diverging if needed.

This is especially true for Plomino, which is meant for quickly creating solutions where exhaustively analysing and
modeling the domain is not justified; or indeed, where a Plomino solution is instrumental in building up the business
knowledge necessary to realistically model a good solution, while incidentally getting work done.

This is a powerful motivation of the “dirty” mixing of content and code in the database.

Workflow

One way of addressing workflow needs in Plomino is to create a script library which computes the form which should
be used based on the context (what is being viewed by whom). However Plomino itself doesn’t offer building blocks
to make building workflows easy and consistent.

3.4. Security 9

Plomino Documentation, Release 1.17

This makes associating security with workflow states more arduous than ideal.

Use cases

Use cases:

• simple form-based data capture.

• mini-apps that manipulate Plone content.

• selfcontained apps.

• replicate forms/data to other instances.

• pull/integrate data from other sources.

Plomino has different sweet spots. One of the quickest is simple form-based data capture. On this level, it is Plone-
FormGen‘s more free-spirited cousin.

It can also be used to manipulate Plone content, similarly to Content Rules, but again, it’s easier to script case-by-
case variations from Plomino than using Rules. This is a good case for Plomino micro-apps consisting only of a
couple of forms with some scripts to drive Plone, e.g. pre-populating an event folder with Event, NewsItem, and PR
announcements.

Once the bug has bitten, it’s also very tempting to build entire self-contained applications in Plomino. In some cases
this makes sense (for example, Plomino data and applications can be synced between Plone instances, so if you need
(parts of) your application to be synced, it has to stay in Plomino), but the goal should always be to build as little as
possible. For example, it would be a pity to build a bug tracker in Plomino.

Regarding the replication use cases: imagine a library environment. The forms for browsing books are synced to the
public servers, but the forms for editing the catalog are kept on the librarians’ servers. Or imagine a business with
different branches. The data from each branch is synced to the head office to be aggregated, and pricelists are synced
to branches.

Plomino can also function as a very easy integration point with legacy or third-party systems. Just arrange to push CSV
to the URL of a Plomino view, or for another service to pull CSV from a Plomino view (or form or agent, depending
on your needs), and complete the integration using Plomino Forms.

Digging deeper

Plomino looks nice and simple at first glance, but it allows you to get yourself into as much trouble as you like ;-)

It is conceptually quite simple, and applications are fully defined by the XML export. The core Plomino concepts
could be re-implemented on Dexterity or Pyramid or Django without too much trouble. Living in a CMS has its
advantages, however. The Zope and Plone APIs make a lot of power available.

Building pages

It is easy to think of Plomino in terms of simple forms-based data capture. However forms can have conditional
sections, and can contain sub-forms. In addition, fields can return the rendered HTML of other forms; for example, in
the Milestones field on a Project document you could look up and iterate over all the associated Milestone
documents, get each one to render itself using an appropriate form, and include the HTML in the Project view. You
could even return arbitrary javascript to be executed upon rendering of a form. So though you can write forms simply
as richtext documents, you are also free to compute any HTML you need. For this, you have a number of mechanisms:

10 Chapter 3. Background and highlevel overview

http://plone.org/products/ploneformgen
http://plone.org/products/ploneformgen

Plomino Documentation, Release 1.17

render documents using forms or fields, override the template used for fields or views with a template of your own, or
compute exactly what you need in Python.

It is a matter of judgment at which point this becomes unmanageable. It can allow a quicker turnaround than a
Python-product-based approach, but without discipline it can result in a hard-to-understand mess.

Application export and versioning

Some of the drawbacks of old-style through-the-web coding in Zope include:

• it’s hard to distinguish between application and data;

• it’s easy to lose track of application elements among nested folders with acquisition in play;

• it’s hard to version the application.

These are mitigated in Plomino in various ways:

• A Plomino application consists of a single container with design elements (forms, views, agents), and a
resources subfolder with scripts, templates, images, and other collateral.

• The application can be exported to XML files. The ordering and formatting of the XML is consistent and
can be usefully versioned. The XML files can be imported to update an instance to a particular version of an
application.

Data migration

As mentioned before, forms and documents are not tightly coupled. It’s quite easy to end up with a mix of documents
from the time before books had a Translator item and later documents that do have that item and others.

In order to deal with this, sometimes all that is needed is to code defensively. Instead of assuming that all documents
will have a Translator item, show a default value if they don’t. However if it is necessary for the item to exist, the
documents need to be updated. Various approaches are possible: in the simplest case, just call the save() method on
all documents. In more complicated scenarios, documents may need to be saved using specific forms or by a user with
a specific role. This can be dealt with by creating a Plomino Agent which does the required migration.

Once there are a lot of documents, re-saving all necessary documents can take a long time. For this reason, as with all
long-running Zope tasks, it’s best to kick off the migration on a ZEO client set aside for jobs like this.

Caveats

A quick list of ways to make life difficult for yourself:

• Change the field type after you already have documents with items of the original type (e.g. you used to be
creating strings, but now you’re creating dates).

• Store complex values as items (like arrays with inconsistent formats including CSV strings).

• Store derived fields that are not computed for display (once you do this, you have to worry about keeping derived
fields current when editing the reference documents).

• Have a field called “Amount” in both forms “B” & “C”, both used to show doc “D”, but the definition of the
field on “B” is incompatible with the field on “C” (e.g. in the one case it’s an integer value, and in the other
it’s a currency-formatted string. (This could happen if you forget to update both forms and migrate existing
documents.)

3.8. Digging deeper 11

Plomino Documentation, Release 1.17

Ideas for improvement

Plomino has been conservative, preferring to remain open-ended and conceptually simple. While it could be made
more sophisticated in many ways, it’s easy to lose some good properties in the process, such as the ability to export
and version the application in its entirety, or to easily sync design elements and documents among Plomino instances.

Functionality

That said, the current weak areas of Plomino are security, workflow, and references, as they must be implemented
manually using formulas.

Regarding workflow, perhaps AlphaFlow could be resurrected, or zope.wfmc or hurry.workflow could be used. A
DCWorkflow-based approach would not work, as all Plomino documents share the same type, and live in the same
folder.

Currently references between documents in Plomino tend to be simplistic, consisting of storing document paths or
ids as items. This makes transitive relationships or keeping track of constraints on relationships error-prone and
cumbersome. On the other hand, it is robust in its simplicity. If a reference engine such as zc.relationship were used,
there would be the potential for the documents to get out of sync with the relationship index due to import or sync
operations.

Another wrinkle regarding relations is that Plomino documents are identified by their id, which should normally not
change. By default, the id is a random key. It is possible to compute something more readable, but be careful of doing
so prematurely, as it makes you worry about id collisions and the continued suitability of ids chosen at the outset.
Since Plomino documents can be synced among Plomino applications, relations cannot depend on object identity.

Performance

It’s easy to make a big Plomino database crawl. The code being executed is Restricted Python, and rendering a form
which pulls content from many related documents can pull lots of big fat Archetypes-based objects into memory. The
contents of a view is anything that evaluates True for the view’s selection formula, which may be expensive. Not bad
when done incrementally, but it can be pretty bad when refreshing the view for thousands of documents.

Plomino does provide an extension mechanism, so you can move aspects of your application to filesystem-based
Python code if they are mature enough and prove to be bottlenecks.

12 Chapter 3. Background and highlevel overview

http://pypi.python.org/pypi/zope.wfmc
http://pypi.python.org/pypi/hurry.workflow
http://pypi.python.org/pypi/zc.relationship

CHAPTER 4

Installation

Prerequisites

Plomino is built on Plone, so in order to install Plomino, you first need to install Plone: go to http://plone.org, download
Plone and follow the instructions.

Deploy Plomino in your Plone site

To deploy the Plomino product, you need to edit your buildout.cfg file and add the following in the eggs section:

eggs =
...
Products.CMFPlomino

Then you have to run buildout to realize your configuration:

bin/buildout -N

This will download the latest Plomino version (and its dependencies) from the http://pypi.python.org/ repository and
deploy it in your Zope instance.

Now you can restart your Zope instance and in your Plone site, go to Site setup / Add-on products.

Here you should see Plomino and plomino.tinymce in the list of installable products. Select them and click
Install.

Once done, Plomino is installed, so when you are in a folder, you can add a new Plomino database using the Plone
Add new... menu.

13

http://plone.org
http://pypi.python.org/

Plomino Documentation, Release 1.17

Deploy Plomino development version

$ virtualenv --no-site-packages --distribute ./venv
$ cd ./venv
$ source bin/activate
$ git clone git://github.com/plomino/Plomino.git
$ cd ./Plomino
$ python bootstrap.py
$ bin/buildout -N

14 Chapter 4. Installation

CHAPTER 5

Concepts

Plomino database

A Plomino application is supported by one or more Plomino databases.

The Plomino database is the Plone object which contains the application data (i.e. the Documents), and its structure
(i.e. the Design).

Design

The design of a Plomino application consists of the set of Forms and Views provided in the Plomino database.

The design defines the structure of the application, and it is created by the application designer. It differs from the
documents, which are the application data, created by the users.

Forms

A form allows users to view and/or to edit information.

A form usually contains some fields of various types (text, date, rich text, checkbox, attached files, etc.).

The application designer designs the layout he needs for the form, and inserts the fields wherever he wants.

A form can also contain some action buttons to trigger specific processing.

Forms are not always used to create or view documents — sometimes they are used to provide specific features (see
Search forms, and Page forms).

15

Plomino Documentation, Release 1.17

Search forms

The application designer can create specific forms dedicated to perform searches. These forms are not used to create
documents, but to input the search criteria.

It allows the designer to provide more specific and more business-oriented search features than the global Plone search.

Page forms

The application designer can create page forms to build custom navigation menus, generate reports, provide portlet
content, etc.

Documents

A document is a set of data. Data can be submitted by a user using a given form.

Note: a document can be created using one form and then viewed or edited using a different form. The presentation
of the document is determined by the form, which renders the data items found on the document. The fields on the
form need not correspond one to one with the data items stored on the document: there may be more fields, or fewer
fields, or the type of field may be different. Care should be taken to maintain consistency: make sure that the form
matches the document.

This mechanism allows the document rendering and the displayed action buttons to change according to different
parameters (user access rights, current document state, field values, etc.).

Views

A view defines a collection of documents.

A view has a selection formula which filters the documents that the application designer wants to be displayed in the
view.

A view contains columns. Column contents is computed from data stored in the documents. A Plomino view is like
a canned search. Views are built up incrementally, and not assembled dynamically as would be the case for a catalog
query. Every time a document is saved, view formulas are evaluated, and if any of them return True, the document is
included in the view.

This has two implications:

• While it is cheap to keep the view up to date incrementally, it can be expensive to rebuild views from scratch, as
this involves evaluating view formulas over all documents in the database.

• A document needs to be saved in order for its state to be reflected in views. I.e. a simple setItem is not
enough.

Views store columns as catalog metadata. This effectively doubles the storage required for any field when it is added
as a view column. It trades space for speed: the last-saved value of an expensive computed field can be obtained from
the view column without having to execute the field formula again (but watch out for stale values, if the state or context
of the document has changed since the last save).

16 Chapter 5. Concepts

Plomino Documentation, Release 1.17

Columns

Views can contain columns. The column values are stored and displayed (unless hidden) for every record that forms
part of the view. A column may refer to a form field, in which case that field will be used to render the record value,
or it may specify a column formula, which need not correspond to one or any field.

Column totals

Numerical columns can be added up to display column totals (the total for all the records in the view). If the column
refers to a field, that field will also be used to render the total.

If desired, column totals can be dynamically computed in the browser per view batch. In order to enable this, include
the following snippet in the View’s Dynamic Table Parameters:

'fnFooterCallback': generateTableFooter,

5.5. Views 17

Plomino Documentation, Release 1.17

18 Chapter 5. Concepts

CHAPTER 6

Build a simple Plomino application

Create a Plomino database

To create a Plomino database, select Plomino: database in the Add item Plone menu.

Enter a title for the database (for instance Library) and save it.

19

Plomino Documentation, Release 1.17

Add a form

Forms can be added using the Plomino Design portlet, which is usually displayed in the left-hand column, or using the
Plone Add dropdown menu.

To add a form, click Add new... Form in the portlet, or select Plomino: form from the Add item Plone menu.

On the add form, enter the form id. The form id is initialized with a generated value (for instance: plominoform.
2008-01-31.9797530894). It is preferable to replace it with a more meaningful id (for instance: frmBook). It
is a technical identifier, so use basic characters and numbers only (blank space and special characters are forbidden).

In the Title field, enter the form label, which will be displayed to the users (for instance: Book description.

Save the form to create it (you need to save it before being able to add fields to your form).

Create the layout and add fields

Click on the Edit tab.

20 Chapter 6. Build a simple Plomino application

Plomino Documentation, Release 1.17

Go to the Form layout section which contains the TinyMCE editor. If necessary, expand the editing area by dragging
the bottom-right corner, or clicking on the full-screen icon from the editor toolbar.

Create your form layout using the standard editing tools (styles, tables, etc.).

To add a field to the layout, select some word in the layout and click on the Add/edit Plomino field button in the
TinyMCE toolbar.

The selected text will be used as the field id, and a pop-up window will allow you to enter the field main parameters:

6.3. Create the layout and add fields 21

Plomino Documentation, Release 1.17

For the bookAuthor field, keep the default values (‘Text’ and ‘Editable’), click Insert and then Close.

As you can see, the field is rendered with a blue dashed border in the layout.

Do the same for the following fields:

• bookTitle, type ‘Text’, ‘Editable’

• publicationYear, type ‘Number’, ‘Editable’

• summary, type ‘Rich text’, ‘Editable’

• cover, type ‘File attachment’, ‘Editable’

• bookCategory, choose type ‘Selection list’, ‘Editable’, but after clicking Insert, click on Specific settings.

This opens the field settings page in a new window, where you can enter the possible values for the Selection list:

22 Chapter 6. Build a simple Plomino application

Plomino Documentation, Release 1.17

Click Apply, go back to the Form window, and close the field pop-up.

Now the form is built, and its associated fields have been created.

6.3. Create the layout and add fields 23

Plomino Documentation, Release 1.17

Save the form (click the Save button at the bottom of the page).

Use the form

You can now use this form to create documents.

24 Chapter 6. Build a simple Plomino application

Plomino Documentation, Release 1.17

Go back to the Library database. The database welcome page now contains a link to add a new document using the
Book description form:

6.4. Use the form 25

Plomino Documentation, Release 1.17

Click on this link, and you get the form displayed as designed in the TinyMCE editor, including the fields as they have
been defined:

You can enter values and save, and a new document will be created:

26 Chapter 6. Build a simple Plomino application

Plomino Documentation, Release 1.17

Explore the database design

Go to the Library database and click the Design tab.

This tab displays all the design elements contained in the database:

6.5. Explore the database design 27

Plomino Documentation, Release 1.17

The pencil icon gives access to the corresponding object in edit mode, the page icon in read mode, and the folder icon
in content mode.

Change the document title

By default, all the documents created with a form have the same title as the form.

In the present case, the title is “Book description”, and it will be the title of all the documents you would create with
your form.

To display a more useful title, go to the frmBook object, edit it, and enter the following formula in the Document title
formula field:

return "Information about %s (%s)" % (
plominoDocument.getItem('bookTitle'),
plominoDocument.getItem('bookAuthor'))

Save the form, go back to the document, make a change and save it. This will trigger calculation of the title formula.
Now you will see the title has been set as specified in the formula:

28 Chapter 6. Build a simple Plomino application

Plomino Documentation, Release 1.17

The document title is computed by a formula. All Plomino formulas are restricted Python scripts with certain variables
and functions provided. In this case, the plominoDocument variable is used, which is the current document.

All the data items stored on the document by forms, or set using formulas, are accessible using the getItem API:
(plominoDocument.getItem(<field name>)).

For more information about formulas, see Formulas below.

Change the document id

The document id is used in the URL. By default, it is an opaque random identifier
(4e219e4ffff21b9753c94a0e006e95bf in the following):

http://localhost:8090/demo/books/plomino_documents/4e219e4ffff21b9753c94a0e006e95bf

If you want to use meaningful ids, you can define a Document id formula. Go to the frmBook object, edit it, and
enter the following formula in Document id formula:

plominoDocument.bookTitle +"-"+plominoDocument.bookAuthor

Unlike the title, the id is computed at creation time, and it cannot be changed later. So the existing document will
not use this formula even if we re-save it. But if you create a new document, you will get a id corresponding to your
formula:

http://localhost:8090/demo/books/plomino_documents/1919-john-dospassos

Warning: If you use this facility, you need to take care that document ids are unique, well-formed, and resolve
any issues that arise when replicating documents to other Plomino instances. Calculating your own document ids
can be a considerable responsibility, depending on the requirements of your application.

Add a view

A view defines a collection of documents. Some views are used to present lists of documents to users, and some are
used from formulas to structure the Plomino application.

A view has a selection formula, which defines which documents form part of the view, and it usually contains some
columns to display information about the matching documents. These columns may compute derived information
from data items on documents, or even from values looked up from other documents, Plone objects, or other sources.

6.7. Change the document id 29

Plomino Documentation, Release 1.17

You can generate a view automatically from a form:

• Go to the frmBook form, and

• click on Generate view in the Design portlet on the left.

This generates a view which:

• selects all the documents that were created or last edited using the frmBook form,

• creates a column for each field on the form (file attachments and rich text fields are skipped), and it also

• inserts an Add new action.

The columns can be re-ordered by drag-and-drop in the Contents tab. The column labels can also be changed.

Add a view manually

Go back to the Library database.

Select Plomino: view from the Add item Plone menu. Enter an identifier (allBooks) and a title (‘All the
books’):

30 Chapter 6. Build a simple Plomino application

Plomino Documentation, Release 1.17

Enter a selection formula too: this formula must return True or False. It is evaluated for each document; if the
returned value is True, the document is included in the view; if False, it is rejected.

Enter the following expression and hit Save:

return True

(this expression always returns True, so all the documents will be displayed).

You get the following result:

We just see a link Go which allows us to access the document we have created. Now we need to add columns to this
view.

Select Plomino: column from the Add item Plone menu.

Enter an identifier and a title, and select the field you want to display in the column.

6.9. Add a view manually 31

Plomino Documentation, Release 1.17

You can also enter a formula to compute the column value, for instance:

return plominoDocument.getItem('bookTitle').upper()

Warning: When you use a field as column value, the Plomino index will use the field index. So if you display this
field as column in several views, it will not increase the index size. But when you create a formula, it will create a
new column-specific index, so having a lot of column formulas might impact the database global performances.

Similarly, add a column to display bookAuthor.

Columns can be ordered by going to the view’s Contents tab and moving the columns where needed.

If you go back to the Library database root, the view is proposed in the Browse section:

32 Chapter 6. Build a simple Plomino application

Plomino Documentation, Release 1.17

Create more documents. When you click on the link All the books, the view is displayed with its 2 columns (and its
new documents):

To improve browsing of the documents, it could be useful to sort the view.

To do that, click on Edit, go to the Sorting tab and enter col1 in the Sorting column, then save:

6.9. Add a view manually 33

Plomino Documentation, Release 1.17

Add more views

You can add as many views as necessary.

You can build views able to filter the documents; for instance if you enter the following selection formula:

return (plominoDocument.getItem('publicationYear') >= 1800 and
plominoDocument.getItem('publicationYear') < 1900)

you will only list the XIXth century books.

You can create categorised views: create a view with a first column which contains the bookCategory field value,
and select Categorised in the Sorting tab:

34 Chapter 6. Build a simple Plomino application

Plomino Documentation, Release 1.17

Each category can be expanded or collapsed.

Dynamic view

Click on Edit, go to the Parameters, and change widget to Dynamic table. It renders the view using JQuery Datatables
(column sorting, live filtering, ...).

6.11. Dynamic view 35

Plomino Documentation, Release 1.17

Add a search form

Create a new form named frmSearch, and add some fields with the same identifiers as the documents fields you
want to be able to search; for instance: bookTitle, bookAuthor and bookCategory.

In the Parameters tab, select ‘Search form’ and enter all in Search view:

This form is now proposed in the Search section in the Library database root:

36 Chapter 6. Build a simple Plomino application

Plomino Documentation, Release 1.17

If you click on this link, you get the search form, and if you enter some criteria, the results are displayed under the
form:

Note: the criteria are effective only if the field names match the document item names.

About and Using pages

Go to the Library database Edit tab. You can fill in the About this database section and the Using this database section.

Information entered here will be available under the About and the Using tabs. It allows you to offer users a page to
describe the purpose of the application and another one to give a short user guide.

6.13. About and Using pages 37

Plomino Documentation, Release 1.17

38 Chapter 6. Build a simple Plomino application

CHAPTER 7

Access control

Standard Plomino access rights

Plomino offers 5 standard access levels for any Plomino database:

Reader can read any document, perform searches, but cannot create new documents or modify existing ones.

Author Reader + can create new documents, and modify/delete only documents he/she has created.

Editor Author + can modify/delete any documents.

Designer Editor + can change the database design, but cannot edit formulas.

Manager Designer + can change formulas + can change the access rights.

These rights can be granted to Plone members and/or to Plone groups.

Note: in reality, Designer users could in fact edit formulas, we just hide the editing UI. So the Designer role is not
a security restriction, it is just a UI behaviour useful to allow non-coder users to easily modify a form layout without
breaking the Python code in the different formulas.

Generic users

Plomino handles 2 types of generic users:

Anonymous users not authenticated on the Plone site.

Authenticated any authenticated user.

The Plomino standard access rights can be applied to those 2 generic users, but an anonymous user will never be able
to delete a document.

39

Plomino Documentation, Release 1.17

Note: as nothing can differentiate an anonymous user from another one, this rule exists to ensure that no one will
delete a document created by someone else.

Roles

Some applications may need to provide, for specific users, a specific behaviour which is beyond the basic access rights
mechanism we have just described.

Plomino allows you to create roles which can be applied to Plone users.

By default, a role does not grant any extra rights, but the application designer will use them as markers to enable
specific behaviours in his application.

For instance, if you build a Plomino application to handle purchase requests, all the employees will be able to use the
form to submit a purchase request, but in the form you would check for the [FinancialReponsible] role to
allow access to the Approval section.

Note: roles are always noted with brackets.

Manage the access rights

Access rights are managed in the tab named ACL (Access Control List).

40 Chapter 7. Access control

Plomino Documentation, Release 1.17

7.4. Manage the access rights 41

Plomino Documentation, Release 1.17

Application-level access control

In addition to the global access rights, it may also be necessary to configure access to documents individually.

Plomino_Readers and Plomino_Authors

Plomino_Readers contains the list of users/groups/roles allowed to read the document. By default, this item does
not exist, so users defined as readers according the database ACL can read the document.

Plomino_Authors contains the list of users/groups/roles allowed to edit the document. By default, this item
contains the document creator’s id, appending any other author id during the document life cycle.

Those items can be easily editable using formulas:

Make sure that the [purchaser] role can always edit this document
current_authors = plominoDocument.getItem('Plomino_Authors')
if '[purchaser]' not in current_authors:

current_authors.append('[purchaser]')
plominoDocument.setItem('Plomino_Authors', current_authors)

onOpenDocument event

If the onOpenDocument event returns a string, it is considered as an error. The document will not be displayed, and
the returned string will be displayed as a warning message.

As an example, here is one way to restrict document access to the creator of the document:

• create a field named creator (for instance). It should be of type Name and mode Computed on
creation, with the following formula:

plominoDocument.getCurrentUserId()

This will store the user id of the user who creates the document (it might be dangerous to use the
Plomino_Authors item on the document, as its value may evolve during the document life cycle).

Add this field to the index.

• add a formula for the onOpenDocument event to make sure the user is the creator (if this formula returns
a false value, opening is allowed, but if it returns a true value, e.g. a string, opening fails, and the value is
displayed as an error message).

Here’s an example formula:

member_id = plominoDocument.getCurrentUserId()
if member_id == plominoDocument.getItem('creator'):

return None

roles = plominoDocument.getCurrentUserRoles()
if "[controller]" in roles:

return None

return "You are not allowed to view this document."

Note: in this formula, we’re checking for the [controller] custom role, instead of the PlominoManager role.
While this does imply that you have to give this role to everyone who has the PlominoManager role, it allows you

42 Chapter 7. Access control

Plomino Documentation, Release 1.17

to distinguish between functional managers (who will only have the [controller] role, and technical managers
(who will also have the PlominoManager role).

• create a search form which filters documents where the creator field matches the current user id.

7.5. Application-level access control 43

Plomino Documentation, Release 1.17

44 Chapter 7. Access control

CHAPTER 8

Fields reference

General parameters

id

Value Free text.

It mustn’t contain special characters or spaces.

Purpose Field identifier. It is used in Plomino formulas to identify the corresponding document
item.

Field type

Value

• Boolean

• Datagrid

• Date/Time

• Doclink

• File attachment

• Google chart

• Google visualization

• Name

• Number

• Rich text

• Selection list

• Text

45

Plomino Documentation, Release 1.17

Purpose Depending on the field type, the values entered in the field and/or the rendering of the field
might be different. (See Type-specific parameters.)

Field mode

Value

• Editable

• Computed

• Computed for display

• Computed on creation

Purpose When editable, a field value can be entered by the user. Otherwise, its value is computed
using a formula. See Computed fields.

Formula

Value Python code

Purpose Depending on the field mode, this formula will compute the field value (if computed), or
just its default initial value (if editable). Note: If the field is called using computeItem, from
some event or from some other field formula, the current field value will be overwritten even if
it is an editable field.

Field read template and field edit template

Value Page template id

Purpose The custom .pt template to use to render the field. See Field templates.

Validation formula

Value Python code

Purpose The validation formula must return a string containing the error message if the validation
failed, or an empty string is the validation was successful.

Add to index

Value True/False

Purpose If True, the field is added to the database index, allowing to perform search on its values.

Index type

Value ZCatalog index type

Purpose Allow to define how the field must be indexed. If Default, the field is indexed using the
index type associated with its type.

Field indexing

Plomino allows you to find documents according their field values when those fields are indexed. Search can be
performed using a search form (see related paragraph) or programmatically using the dbsearch method:

db = context.getParentDatabase()
results = db.getIndex().dbsearch({

'Form': 'frmEmployee,
'employee_department': 'HR'},
sortindex='employee_name')

46 Chapter 8. Fields reference

Plomino Documentation, Release 1.17

Note: sortindex is optionnal.

The search behaviour depends on the index types. Zope/Plone offers a standard set of indexes, and the most common
ones are:

FieldIndex

Behaviour

• it accepts any type of values (text, dates, list, numbers, ...)

• it matches exact values,

• it allows sorting.

Example If the field value is ‘Jack London’, it will match if we search for ‘Jack London’, but not if
we search for ‘Jack’.

DateIndex

Behaviour

• it handles date values in a more efficient way than FieldIndex,

• it allows sorting,

• it allows to search using a time interval.

Examples Equality: db.getIndex().dbsearch({'EventDate': Now()+10})
Before: db.getIndex().dbsearch({'EventDate': {'query': Now(),
'range': 'max'}}) After: db.getIndex().dbsearch({'EventDate':
{'query': Now()-7, 'range': 'min'}}) Interval: db.getIndex().
dbsearch({'EventDate': {'query': [Now(), Now()+10], 'range':
'min:max'}})

ZCTextindex

Behaviour

• it indexes text, and can match any contained word,

• it does not allow sorting,

• it allows wildcards and logical operator,

• it ignores non-meanningful words (like ‘the’, ‘a’, ‘is’, etc.).

Example If the field value is ‘Jack London was here a long time ago’, it will match if we search for:

• ‘Jack London’,

• ‘Jack AND time’,

• ‘London AND NOT Paris’,

• ‘Lond*’.

KeywordIndex

Behaviour

• it indexes lists, and match their values,

• it does not allow sorting.

Example If the field value is ['Austerlitz', 'Iena', 'Waterloo'], it will match if we
search for:

• 'Austerlitz',

8.2. Field indexing 47

Plomino Documentation, Release 1.17

• ['Iena', 'Austerlitz'],

• {'query': ['Austerlitz', 'Agincourt'], 'operator': 'OR'}

All the Plomino field types are associated to a default index type:

• Text: FieldIndex,

• Number: FieldIndex,

• Rich text: ZCTextIndex,

• Date/Time: DateIndex,

• Name: FieldIndex,

• Selection list: KeywordIndex,

• File attachment: ZCTextIndex,

• Doclink: KeywordIndex.

The default index type can be changed using the Index type parameter, but doing so might produce side-effects
(for instance if the field was used to sort views or search results, and its type is changed to a non-sortable index, this
will break sorted views).

Type-specific parameters

Type-specific parameters are available in the field’s Settings tab:

Text field

A text field allows simple text input.

Text fields can also be rendered hidden. In this case, input comes from the REQUEST.

48 Chapter 8. Fields reference

Plomino Documentation, Release 1.17

Widget

Value

• Text

• Long text

• Hidden

Purpose Text is rendered as a basic HTML input text field, or a hidden field.

Size

Value Integer

Purpose

• If “Text widget”: input text size.

• If “Long text”: textarea rows.

8.3. Type-specific parameters 49

Plomino Documentation, Release 1.17

Boolean field

No specific parameters.

Displays as a checkbox, and stores True or False.

Selection list field

Widget

Value

• Selection list

• Multi selection list

• Checkboxes

• Radio buttons

Purpose Note: multi selection list and checkboxes are multi-valued.

Selection list

Value List of strings

50 Chapter 8. Fields reference

Plomino Documentation, Release 1.17

Purpose The possible values selectable in the field.

Note: if a value contains a pipe (|), Plomino uses the string before the pipe as the entry label,
and the string after as the real value.

Example: United states of America|USA

Selection list formula

Value Python script

Purpose The formula must return the list of values selectable in the field (using the label|value
format if necessary).

Note: if a Selection list formula is provided, it overrides the Selection list to provide the field
value list.

Separator

Value String

Purpose Used to separate the values in read mode for multi-valued fields and also in edit mode for
radio buttons and checkboxes.

Default is blank.

Examples: ;-,

Name field

Type

Value

• Single valued

• Multi valued

Separator

Value String

Purpose Used to separate the values in read mode.

Default is blank.

Examples: ;-,

8.3. Type-specific parameters 51

Plomino Documentation, Release 1.17

Number field

Decimal numbers can be represented exactly, unlike floats. Zero is zero, not something like 5.
5511151231257827e-017.

Type

Value

• Integer

• Float

• Decimal

Size

Value Integer

Purpose Length of the HTML input.

Date/Time field

Format

Value Python date pattern

52 Chapter 8. Fields reference

Plomino Documentation, Release 1.17

Purpose Example: %d/%m/%Y

If empty, default to the Database default date format.

Starting year

Value Integer

Purpose Earliest year selectable using the date/time widget.

If empty, default to the Plone site default starting year.

Note: The calendar widget for selection of dates requires the calendar_formfield.js script to function. By
default, this is not loaded for Anonymous users, so if you want to show a date selection widget to Anonymous, be sure
to allow this script at portal_javascripts in the ZMI.

File attachment field

No specific parameters.

A file attachment field involves both a document item and a file. The item is named for the field and is set to a
dictionary {filename: contenttype} when edited through the web.

When dealing with attachment fields in formulas, both the item and the file need to be managed. For example:

i = 'itemname'
filename, contenttype = doc.setfile(

myfile,
filename='%s.csv'%i,
overwrite=True)

doc.setItem(i, {filename: contenttype})

For a multi-valued field, this would be:

i = 'itemname'
filename, contenttype = doc.setfile(

myfile,
filename='%s.csv'%i,
overwrite=True)

doc.setItem(i, doc.getItem(i).update({filename: contenttype}))

The same goes for deleting files (use the deletefile API).

Rich text field

No specific parameters.

8.3. Type-specific parameters 53

Plomino Documentation, Release 1.17

Doclink field

Widget

Value

• Selection list

• Multi-selection list

• Embedded view

Purpose If Embedded view is selected, the view itself is displayed, with a check box on each row to
allow the user to select a document.

Source view

Value The targeted view

Label column

Value The column used to provide the list labels

Purpose Only apply if Selection list or Multi selection list

Documents list formula

Value Python script

54 Chapter 8. Fields reference

Plomino Documentation, Release 1.17

Purpose This formula must return a list of string values formatted as follows:
label|path_to_document

Notes:

• it might a path to any kind of Plone object (even if the main purpose is to link to Plomino
Documents),

• if a formula is provided, it overrides Source view and Label column.

Separator

Value String

Purpose Used to separate the links in read mode.

Default is blank.

Examples: ;-,

Datagrid field

A datagrid field allows to edit a table. Rows are edited using an associated form (displayed in a pop-up) in which fields
are mapped to columns.

Associated form

Value String

Purpose Id of the form to use to add or modify row content.

Columns/fields mapping

Value List separated with commas (with no space).

Purpose Field ids of the associated form sorted according the columns

Javascript settings

Value Javascript

Purpose JQuery Datatables parameters

8.3. Type-specific parameters 55

Plomino Documentation, Release 1.17

Example: hide a column in a view

You can hide a column in a view by changing the Dynamic Table Parameters field to include something like:

'aoData': [{"bVisible": false}, null, null, null]

You would need one item in the array for each column in the table.

Google chart field

Allow to draw static charts (or maps, etc.).

Example

create a “Computed for display” Google chart field, and enter the following formula:

56 Chapter 8. Fields reference

Plomino Documentation, Release 1.17

cost = 75
margin = 25
return {

'chd': 't:%s,%s' % (str(cost),str(margin)),
'chs': '250x100',
'cht': 'p3',
'chl': 'Cost|Margin'
}

See Google chart reference.

Google visualization field

Allow to draw dynamic charts (or maps, etc.).

8.3. Type-specific parameters 57

http://code.google.com/intl/fr/apis/chart/

Plomino Documentation, Release 1.17

58 Chapter 8. Fields reference

CHAPTER 9

Features reference

Formulas

Formulas are Python scripts. Example:

return plominoDocument.getItem('price') * 15

returns the value of the price item multiplied by 15.

If the price item doesn’t exist, getItem will return None, and the formula will raise an exception. The exception
is swallowed and the formula returns None as well. If the Plomino database is running in debug mode, the exception
will be logged. If the price item contains a string or a truth value instead of a number, you’ll also get an exception.
Plomino needs to be coded defensively!

Note: a formula does not necessarily need to return a value – you may just need to make some changes in some
documents (for instance if it is the formula in a Plomino action), so the return value would be irrelevant.

plominoDocument is a reserved name which corresponds to the current document on which the formula is evalu-
ated.

plominoContext is a reserved name which corresponds to the context in which the formula is evaluated. In some
cases the formula is executed on an object which is not a Plomino document (but a view, or a form, for instance).

Note: Technically, plominoDocument and plominoContext are just targeting the very same object, which is
the Zope context. plominoDocument, plominoContext, context can be used identically.

Besides these names, many functions defined in PlominoUtils are available within the context of a formula.

Document items should be accessed using the getItem() method: plominoDocument.
getItem('validationDate').

To change an item value, use the setItem() method: plominoDocument.setItem('firstname',
'Eric')

59

Plomino Documentation, Release 1.17

You can access the parent Plomino database of the document (or view, or form, according the context) using the
getParentDatabase() method.

You can also access the views and the other documents. Example:

db = plominoDocument.getParentDatabase()
view = db.getView('pendingPurchases')
total = 0
for doc in view.getAllDocuments():

total = total + doc.getItem('price')
return total

(this example computes the total amount for the pending purchase requests).

You can check the current user rights or roles. Example:

db = plominoDocument.getParentDatabase()
member = db.getCurrentMember()
if db.hasUserRole(member.id, '[Expert]'):

return True
elif db.isCurrentUserAuthor(doc):

return True
elif 'PlominoEditor' in db.getCurrentUserRights():

return True
else:

return False

You can change the author access rights on a given document by modifying its Plomino_Authors item.

This item is created automatically for any document and contains the user id of the document creator. If you want your
document to be editable by users other than its creator, it can contain other ids as well. Example:

authors = plominoDocument.getItem('Plomino_Authors')
authors.append('[Expert]')
if not 'inewton' in authors:

authors.append('inewton')
plominoDocument.setItem('Plomino_Authors', authors)

As you can see in this example, you can add user ids and/or user roles.

For a better understanding of the methods available on Plomino objects, see below in this document.

Names defined in formulas

plominoContext, plominoDocument The execution context of the formula.

parent_form_ids Plomino sets the parent_form_ids key on the REQUEST, which contains a cumulative
list of all the forms rendered, with the most recent form last. This allows fields on subforms to figure out what
form they were rendered from.

script_id The computed id of the executing script, e.g. field_-_frmTime_-_work_type_-_formula.
See SCRIPT_ID_DELIMITER.

SCRIPT_ID_DELIMITER The delimiter used in computation of script ids. To split a script into its component parts,
you can do script_id.split(SCRIPT_ID_DELIMITER).

60 Chapter 9. Features reference

Plomino Documentation, Release 1.17

Adaptive formulas

Since a formula can figure out what form and field it was called on by examining the name of its script, it can adapt to
the context.

For example, to create a selection field which is initialised to select all its values by default, you can set the default
formula as follows:

#Plomino import libConfig
return libConfig_getFieldValuesAsDict().keys()

This assumes a script library libConfig providing functions as follows:

def libConfig_getFieldValuesAsDict():
""" Find the config key based on the calling script name
"""
field_id = libConfig_getFieldId(script_id)
return libConfig_getValuesAsDict(field_id)

def libConfig_getFieldId(script_id):
""" Parse field id from script id

Turn this: `field-_-frmConfiguration-_-pool_construction_date-_-formula`
into this: `pool_construction_date`
"""
script_type, form_id, rest = script_id.split(SCRIPT_ID_DELIMITER, 2)
field_id, formula = rest.rsplit(SCRIPT_ID_DELIMITER, 1)
#DBG Log('field_id: %s' % field_id, 'libConfig_getFieldId')
return field_id

def libConfig_getValuesAsDict(key):
""" Look up a config value by name, return the value as a dictionary, splitting

→˓each line on `separator`.

If the selection is `['key|value', ...]`, return `{key: value, ...}`.
"""
selection_list = libConfig_getSelectionList(key)
d = {}
for row in selection_list:

(label, selection_key) = row.split(separator)
d[selection_key] = label

#DBG Log('values for %s: %s' % (key, `d`), 'libConfig_getValuesAsDict')
return d

def libConfig_getSelectionList(key):
""" Get the selection list for this field.

This will return either:
- the literal value or
- the result of the selection formula, if there is one.
"""
selection_list = []
form_field = frmConfig.getFormField(key)
if form_field:

selection_list = form_field.getSettings().getSelectionList(config)
return selection_list

9.1. Formulas 61

Plomino Documentation, Release 1.17

Actions

By default, Plomino offers a few standard actions (Exit, Save, Delete, Edit, etc.) depending on the object type
(document, view, form), on the current mode (read mode or edit mode), and on the user access rights.

To improve the application usability, you may need to add more actions in the forms or in the views.

To create an action, select Plomino: action in the Add item Plone menu.

Enter an identifier and a title.

Then select the action type:

• Open form: open the form indicated by the Parameter or code parameter to create a new document.

• Open view: open the view indicated by the Parameter or code parameter.

• Close: go back to the database home page.

• Save: submit the form with its current content, and save (or create) the document.

• Python script: run the formula entered in Parameter or code, and redirect to the current object (in read
mode). Examples: send a mail notification to someone, compute a field value and update the document with this
new value, etc. If the formula returns a string, Plomino will assume it is a URL and use it for redirection.

• Redirect: similar to Python script, but the formula is executed before the document is rendered, not when
the button or link is clicked. The script should return an URL which is used as a link or button target. By

62 Chapter 9. Features reference

Plomino Documentation, Release 1.17

including URL parameters in the returned URL, it can be used to links to a form with fields pre-filled. A better
name for this action type may be Computed link.

You can add a hide-when formula to control when the action should be visible or not.

If you select Display action in action bar, the action will be displayed together with the standard Plomino actions in
the action bar.

But (in forms only) you can also choose to insert the action within the form layout directly.

With Tinymce, actions can be created and inserted directly in the form layout from the editor.

Example:

With kupu, you must use the Plomino action style, and the action will be rendered according the Action display
parameter (link, submit button, or button).

Example:

9.2. Actions 63

Plomino Documentation, Release 1.17

Result:

Fields

Computed fields

In a form, the fields where the user can enter data are in edit mode. Upon form submission, user-submitted fields are
set on the document before computed fields are evaluated.

You might also need to use fields which can not be changed by the user. Here are the other modes offered in Plomino:

Computed the field value is computed with a formula each time the document is opened, and it is saved each time the
document is saved.

Computed on creation the field value is computed only once, the first time the document is saved.

Computed on save the field value is computed and stored each time the document is saved.

Computed for display the field value is computed each time the document is opened, but it is not saved.

Example: create a Computed for display field with this formula:

64 Chapter 9. Features reference

Plomino Documentation, Release 1.17

category = plominoDocument.getItem('bookCategory')
if category:

index = plominoDocument.getParentDatabase().getIndex()
others = index.dbsearch({'bookCategory': category})
result = "There are %s other books in the same category" % len(others)-1
return result

return ""

and insert it in the frmBook form:

A Computed for display field with no formula specified will render the item with the corresponding id, if it exists.

Note: If your computed field A depends on computed field B, the formula for A needs to compute B first. This will
result in B being computed twice, so consider caching if needed.

Note: Commenting out parts of a form by editing the HTML hides that from the browser, but not from Plomino: if
the commented part(s) contain computed fields, they will still be computed.

Validation

By default, Plomino validates fields according to their type (for instance, letters are not allowed in a Number field).

You can also add more validation criteria in the field’s Validation tab:

• a field can be mandatory: if the field is empty when the document is saved, Plomino does not save the document
and displays an alert to the user.

• you can enter a formula to implement a specific validation rule (which may depend on other field values).

For instance, in a Purchase request application, the maximum authorised amount is 1000 euros. You would enter the
following formula in the TotalAmount validation field:

if plominoDocument.getItem('TotalAmount') >= 1000:
return 'The total amount must be under 1000 euros'

else:
return ''

If you need to compare the submitted values to the currently stored state of the document, you need to look up the
stored document first:

9.3. Fields 65

Plomino Documentation, Release 1.17

db = plominoDocument.getParentDatabase()
plominoDocument_stored = db.getDocument(plominoDocument.id)

Note: the formula must return an empty string if validation succeeds or an error message if it does not.

Doclinks

A Doclink field allows a Plomino document to reference another document.

The doclink stores the path to the targeted document, and it is displayed as a link.

You may use a view as the source of possible targeted documents.

Example

We have a Contact form allowing users to enter contact information about company employees.

The view allcontacts returns all the contact documents:

We add a doclink field, named manager, in the Contact form to enter the corresponding manager of each employee.

66 Chapter 9. Features reference

Plomino Documentation, Release 1.17

It uses the allcontacts view as its document list source, and displays the name column value as label:

In read mode, the field displays a link to the corresponding document:

If you choose the Embedded viewwidget, the field displays the view itself (including all columns), with a checkbox
to select documents:

9.3. Fields 67

Plomino Documentation, Release 1.17

Instead of using a view, you can compute the document list using a formula (which will override the Embedded view
widget), so you can filter the documents you want to list, you can retrieve documents from another database, or even
list Plone objects which are not Plomino documents. For example:

contactsdb = plominoDocument.restrictedTraverse("/Plone/demo/contacts")
view = contactsdb.getView('allcontacts')
return [d.lastname+"|"+d.getPath() for d in view.getAllDocuments()]

Note: in this example, we use the getAllDocuments method to get the documents list, this method returns
Catalog brains.

To improve performance, the lastname field has been added to the index, so there is no need to wake up the objects
(using getObject), and we use the getPath method to get the path of the real object.

Field templates

You can create a custom template to render a field in a different way than the regular field widgets.

The field template must be added in the Resources folder in the ZMI (go to Design tab / Others / Resources folder) as
a Page Template.

To be applied, the template id must be then entered in the Field read template or in the Field edit template.

The template code can be copied from the Plomino products sources (CMF-
Plomino/skins/cmfplomino_templates/**FieldEdit.pt or **FieldRead.pt).

Here is an example showing a multi-categorized tag field:

Edit template:

<span tal:define="
field options/field;
db options/field/getParentDatabase;
categories python:

[doc.getObject() for doc in db.getView('tags').getAllDocuments()]
">

<table><tr>
<tal:loop repeat="cat categories">

68 Chapter 9. Features reference

Plomino Documentation, Release 1.17

<td valign="top" tal:define="
c cat/tagCategory;
tags cat/tagList
">

category
<select tal:attributes="name options/fieldname"

multiple="true"
lines="4">

<tal:block repeat="v python:
[t+'|'+c+':'+t for t in tags.split(',')]
">
<tal:block define="

current options/fieldvalue;
l python:v.split('|')
">
<option tal:attributes="

value python:l[1];
selected python:test(current and l[1] in current,1,0)
"
tal:content="python:l[0]">value</option>

</tal:block>
</tal:block>
</select>
</td>

</tal:loop>
</tr>
</table>

Result:

Read template:

<tal:block tal:repeat="v options/selection">
<tal:block define="

current options/fieldvalue;
l python:v.split('|')
">
<tal:block condition="

python:test(current and l[1] in current,1,0)">
<tal:block define="

v python:l[0];
cat python:v.split(':')[0];
t python:v.split(':')[1]
">

category
category

</tal:block>
</tal:block>

</tal:block>
</tal:block>

9.3. Fields 69

Plomino Documentation, Release 1.17

Result:

Filling fields from the REQUEST

Editable fields which are not part of the layout take their value from the REQUEST.

So, for example, if you want to pass a parameter to another form:

• in the origin document, put the parameter(s) in the link to the target form, e.g. by adding ?
param1=value¶m2=value to the URL. This will cause the parameter to be part of the GET request
which retrieves the target form.

• in the target form, create an editable field with the same id as the parameter key (e.g. param1 and param2
above), but do not insert it in the form layout. The field will get its value from the REQUEST. - then you can
create Computed on save (or on display, or whatever) fields which use the value of this field.

Field labels

Form layouts may contain field labels. See ‘field labels‘_ below.

HTML attributes injection

The HTML attributes formula parameter allows to enter a formula in charge of returning a string that will be injected
in the field tag element.

A typical example could be:

'placeholder="Enter the book title here"'

But it also be a good way to enable Mockup pattern-based widgets:

'class="pat-select2" data-pat-select2="width:20em"'

or basically any HTML attributes a Javascript library or a CSS grid might expect.

Note: the attributes are inserted just before ‘id=”field_id”’ if it exists.

Forms

Document id and title formulas

Document title formula Compute the document title

Compute document title on view Execute the document title formula whenever the document is rendered

70 Chapter 9. Features reference

Plomino Documentation, Release 1.17

Store dynamically computed title Store the computed title (if different from the stored value) every time the document
is rendered. (Watch out, this can become a hotspot if it causes many writes.)

Document id formula Compute the document id at creation. (Undergoes normalization.)

Field labels

A field label corresponds to a field. To create a label, add text with the format fieldid: Label or just fieldid
to the layout, select this text, and select the Plomino Label style from the TinyMCE styles dropdown.

The fieldid has to correspond to a field in the layout.

If no label is specified (i.e. fieldid), the field title is used as the label.

In edit mode, labels for single-input fields are rendered as an HTML <label for='FIELDID'>LABEL</
label> element.

In read mode, labels for single-input fields are rendered as an HTML <span class='label' title='Label
for FIELDID'>LABEL element.

In edit mode, labels for composite fields such as checkboxes, radio buttons, and picklists are rendered as a
<fieldset><legend>LABEL</legend>...</fieldset> structure, wrapping the target field.

In read mode, labels for composite fields are rendered as a <div class='fieldset'>LABEL...</div> structure.

Note that label elements are rendered in-place (which may be anywhere in the layout), while fieldset elements
are rendered around the target field.

Events

In a Plomino form, you can use the following events:

onOpenDocument executed before document is opened (in both read mode and edit mode)

If the formula for this event returns a false value, opening is allowed; but if it returns a true value, e.g. a string,
opening fails, and the value is displayed as an error message.

beforeSaveDocument executed before submitted values are stored into the document. Submitted values can be
found in context.REQUEST.

onSaveDocument executed after editable and computed items have been stored, and before document is re-
indexed.

onDeleteDocument executed before document is deleted

onCreateDocument executed before the document is saved for the first time (onSaveDocument will also be
executed, but after onCreateDocument)

beforeCreateDocument executed before a blank form is opened.

In the Events tab, you can enter the formulas for each event you need.

Example: enter the following formula for the onSaveDocument event:

date = DateToString(DateTime())
db = plominoDocument.getParentDatabase()
user_name = userFullname(db, db.getCurrentMember())
plominoDocument.setItem(

'history',

9.4. Forms 71

Plomino Documentation, Release 1.17

plominoDocument.getItem('history') +
"This document has been modified by "+user_name+" on "+date)

It will update the history item which logs all the modifications, authors and dates.

Hide-when formulas

In a form, it might be useful to hide or display some sections according different criteria (an item value, the current
date, the current user’s access rights, etc.).

To do so, you must use Hide-when formulas.

Select Plomino: hide when in the Add item Plone menu.

Enter an identifier, a title, and a formula. Example: plominoDocument.bookState == 'Damaged'

Then, modify the form layout to insert the hide-when formula in the form layout. Enter the following:
start:hide-when-identifier at the beginning of the area to hide. And the following at the end:
end:hide-when-identifier And apply the Plomino Hide-when formula style to those 2 bounds:

If the hide-when formula returns True, the enclosed area will be hidden. If it returns False, the area is displayed (in
our example: if the book is damaged, it cannot be borrowed, so we hide the action to check the book availability).

Hide-when formulas can be inserted directly in the form layout using TinyMCE.

Sub-forms

An application can contain several forms.

72 Chapter 9. Features reference

Plomino Documentation, Release 1.17

In the Book library example, we could add a CD form and a Video form. Those two forms would probably have
several similar fields (availability, last borrower, return date, etc.).

To avoid having to build (and maintain) the same things several times, you can use sub-forms.

The sub-form principle is to insert a form within another form.

In our example, we create a borrowInfo form containing the borrower name, the return date, and the availability,
and we insert it as a sub-form in frmBook, frmCD and frmVideo.

The form is inserted using the Plomino Subform style in Kupu:

Sub-forms can be inserted directly in the form layout using TinyMCE.

Note: as you probably do not want borrowInfo to be displayed in the database home page, you have to check
Hide in menu in the form Parameters tab.

Note: Some fields type are computed independently of rendering, namely COMPUTED, COMPUTEDONSAVE and
CREATION. In the case of sub-forms, if multiple sub-forms have fields with the same id as the including form, or other
included forms, those fields will be found multiple times. Plomino handles this case by picking the first occurrence of
the field, and logging the ambiguity (at the WARNING log level).

Search formula

When you create a search form, Plomino uses the form fields to do a default ZCatalog search among the documents of
the view associated with the search page.

If needed, you can create a specific search formula in the form Parameters tab.

This formula is used to filter the result set of the default query, and must return True or False for each document in
the result set.

You can access the values submitted by the search form on the REQUEST object: plominoContext.REQUEST.
get('myfield').

Example:

period = plominoContext.REQUEST.get('period')
if period == 'Ancien regime':

9.4. Forms 73

Plomino Documentation, Release 1.17

return plominoDocument.year
if period == 'Empire':

return plominoDocument.year >= 1804 and plominoDocument.year

Note: Search formulas can be a lot slower than regular ZCatalog searches, you must use them carefully.

Search event

If you do not want the default filters of a search page (the view, the query, and the formula), you can define an
onSearch event on the form Events tab. The formula of this event should return the required list of documents.

You can access the values submitted by the search form on the REQUEST object: plominoContext.REQUEST.
get('myfield').

Page

Like a Search form, a Page form cannot be used to save documents through the web, since Page forms do not display
any action bar. (Formulas could however still call save on a document using a Page form.)

Like any form, it can contain computed fields, actions (inserted in the form layout), and hide-when formulas, so it is a
good way to build navigation pages, custom menus, or information pages (like reports, etc.).

Example:

Here we create a page with 3 actions to access 3 different views, but the last one is enclosed in a Hide-when formula
so it will not be displayed if the current user does not satisfy a given criterium. In the example, we test if the user has
the [dbadmin] role:

"[dbadmin]" not in plominoContext.getCurrentUserRoles()

Result if you are not [dbadmin]:

74 Chapter 9. Features reference

Plomino Documentation, Release 1.17

Result if you are [dbadmin]:

Open-with form

The form used to render a document is determined by a number of mechanisms:

• By default, Plomino document is displayed using the form corresponding to its Form item value (which contains
the id of the form last used to save the document).

• If the view from where the document is opened defines a Form formula, the resulting form will be used instead.

• And to force the usage of a given form, the form id can be passed in the request using the openwithform
parameter.

Example:

http://localhost:8080/test/testdb/58862f161ea71732944d37e0a0489cfc?openwithform=frmtest

Accordions and lazy loading

In Plomino it is possible to accordion some parts of the page. This means that the content of the accordioned part will
not be visible unless you click on the headline to open the accordion.

It is also possible to avoid loading the content of the accordion until such time as the accordion is opened. This is
particularly useful if the content it very big, or if there are many accordions on a page and the reader is interested in
only a few of them.

To turn part of a page into an accordion, use this structure (the header level can be from h2 to h6):

9.4. Forms 75

http://localhost:8080/test/testdb/58862f161ea71732944d37e0a0489cfc?openwithform=frmtest

Plomino Documentation, Release 1.17

<h5 class="plomino-accordion-header">Header</h5>
<div>Content</div>

If the class is plomino-accordion-header, the content of the page referenced by TARGETURL will be substi-
tuted for the subsequent div.

Note: Plomino does not currently offer UI support for this functionality. To use it, you have to generate the desired
content via Python, or enter it literally into the form layout.

Caching

To improve performances, it might be useful to cache some fragments of a form so they are not re-computed every
time.

Cached fragments are set in the layout the same way as hide-when formulas, with start:cache-identifier
and end:cache-identifier markers. The associated formula is supposed to return a cache key.

When the form is rendered the first time, the resulting HTML contained into the delimited area will be stored in cache
and associated with the cache key. Every time the form is rendered, if the cache key returned by the formula matched
an existing cache key, the cached HTML is returned.

Consequently, if you use a formula returning always the same value, e.g.:

"financial-report"

the same cached fragment will be served to all the users in all the cases.

If you use a formula which depends on the current user, e.g.:

"personal-report-" + context.getCurrentUserId()

then there will be a different cached fragment for each user (so if the same user displays the form twice, she will
received the cached content the second time, but other users would not get that cached fragment, they would get their
own cache).

The formula might depend on the date:

"today-report-" + DateToString(Now(), "%Y-%m-%d")

or anything (the document id, any specific item value, etc.).

If the cache key is None, caching is not applied, so for instance:

if context.isEditMode():
return None

else:
return "something-read"

would show the cached content in read mode, but would always regenerate the content in edit mode.

Specific CSS or JS

If a form needs some specific CSS or JS, they can be mentioned in the form edit page in the 2 respective textarea fields
(one URL per line).

76 Chapter 9. Features reference

Plomino Documentation, Release 1.17

Those URLs can target:

• a file provided in the theme but not enabled in portal_javascript,

• a file contained in the Plomino database resources folder,

• an external file (most likely a CDN URL).

Views

Form formula

You may need to read or edit documents using different forms.

For instance, a person who wants to borrow a book wants different information (book description, category, publication
year, etc.) than the librarian (who may want last borrower, return date, availability, etc.).

As explained previously, we can manage this issue using hide-when formulas, action‘s and sub-form‘s.

But if the functional differences are too great, or if the layout is totally different, those strategies will probably produce
too much complexity.

In such a case, it is better to create a totally different form (named frmBorrowManagement for instance).

However, by default the document opens with the form used the last time it was saved.

To open the document with a different form, you need to create a specific view for borrowing management and use the
Form formula parameter.

This formula will compute the name of the form to use when the documents are opened from the view.

If you enter frmBorrowManagement in Form formula, all the documents opened from this view will be displayed
using the frmBorrowManagement form.

View template

If you need a specific layout for a view, you can create a ZPT page which can be used instead the default template.

This way, you can build calendar views, Gantt views, produce charts, etc.

To do so, add your Page Template in the resources folder, and enter its name in View Template in the view Parameters
tab.

A good approach is to copy the ZPT code from CMFPlomino/skins/CMFPlomino/OpenView.pt (in the
Plomino sources) and add your modifications.

Note: good knowledge of ZPT is required.

Export CSV

All the views can be exported as CSV. The export contains the value of each column.

Go to the database Design tab, expand the Views section and click the green arrow icon next to the view you want to
export.

9.5. Views 77

Plomino Documentation, Release 1.17

You can build views specifically for export purposes, you just need to create the columns according the values you
want to get in CSV (note: if you do not want this view to be offered on the database home page, check Hide in menu
in the view Parameters tab).

Database

Design import/export

You can export or import Plomino database design elements from one Zope instance to another.

This may be useful if you want to deploy a new application from a development server to a production server, or if
you want to release a modification or a correction on an application already in production.

To import design elements, go to the database Design tab, and in the Import/Export Design section, fill in the following
parameters:

• the URL of the Plomino database which contains the elements you want to import in the current database;

• user id and password corresponding to a user account on the remote instance. This account must be Plomino-
Manager on the remote Plomino database.

Then click on refresh: Plomino will load the list of all the available elements in the remote database.

You can then choose the elements you want and click on Import to import them into the local database.

In some cases (depending on firewalls, proxies, etc.), it is easier to export from the local database to the remote one.

The principle is the same, you just need to use the Export section.

Design export/import as genericsetup resources

Databases can be made available as genericsetup resources. The main purpose for this is to allow them to be used as
templates when creating a new database, and so they are referred to as template databases

Plomino defines Export Plomino templates and Import Plomino templates steps for genericsetup.

78 Chapter 9. Features reference

Plomino Documentation, Release 1.17

The export step will search for all Plomino databases contained in the portal. If the database has the
IsDatabaseTemplate checkbox ticked, its design will be included in the export. There is no difference between
a database marked as template and any other database, it merely makes the database available as a template.

The databases are written to folders plomino/<dbid>/ in the exported resource archive (.tar.gz), where
<dbid> is the database id.

Exported database resources can be included e.g. in a Plone skin product.

When adding a new Plomino database to a Plone instance with such a skin installed, templated databases included as
resources are offered as starting point for the new database.

This is useful in a hosted environment, to make preconfigured Plomino databases available as two- or three-click
installs (add database, choose template, go) as starting point for a user. Once imported, the template forms are part of
the user’s database, and edited along with the user’s own forms.

For this use, the hoster would have a source Plone instance containing all the databases that they want to make available
together, for example via a specific skin. The source Plone serves to define a group of database templates. Mark all
these databases as templates, and export them as a genericsetup resource archive.

Step by step procedure:

• For each database you want to provide as template, go to its Parameters page, and enable Use as a template.

• Go to your Plone portal ZMI / portal_setup / Export page,

• select the Export Plomino templates step, and click Export selected steps. This produces a .tar.gz file.

• Go to the Plone site where you want to provide those db templates,

• go to its ZMI / portal_setup / Import page, and at the bottom, import the previously downloaded .tar.gz
resource archive file.

• Now create a new Plomino database in your site. The default welcome page will provide a list of the available
templates, so you can pick one and get its design immediately imported in your database.

• the template selection is also available in the Database Design tab.

Refresh a database

After copy/paste of views or forms, or deletion of fields, a Plomino database may be out of date.

If so, you have to refresh the database. This will re-build the database index entirely, and replace all the previously
compiled Plomino formula scripts (the first time a formula is called, it is compiled in a Python Script object in the
ZODB).

To do so, go to the database Design tab, expand the Others section and click on Database refresh.

Refresh also migrates your database to your current Plomino version (if Plomino has been upgraded since the database
was created).

Start page

By default, the database default screen is the generic database menu:

9.6. Database 79

Plomino Documentation, Release 1.17

But you might prefer to display something else instead (for instance a view, a page, a search form, etc.).

In this case, go to your database Edit tab, and enter the element id in the Start page parameter.

Replication

You can replicate documents between 2 Plomino databases, possibly on 2 different Zope servers.

There are 3 replication modes:

push mode local modifications are replicated on the remote database;

pull mode remote modifications are replicated on the local database;

push-pull mode both.

If a document has been modified in both the local and remote databases since the last replication, there are 3 conflict
resolution modes: - local wins, - remote wins, - last modified wins.

Replication can be useful to synchronize information between 2 servers, or for mobile workers who want to be able to
work on a local replica.

Documents XML import/export

In the Replication tab (at the bottom), you can import/export documents from/to an XML file.

80 Chapter 9. Features reference

Plomino Documentation, Release 1.17

Exported documents can be restricted to a view (meanning that only documents selected in this view will be exported).

Document ids are preserved so if a document already exists in the target database, it is updated and not duplicated.

Note: when importing from XML, the onSaveDocument event is not called (as document items are all part of the
export).

Documents CSV import

In the Replication tab, you can import documents from a CSV file.

You need to indicate which form has to be used to create the documents.

The first row in the CSV file must contain the field id for the intended column.

Note: when importing from CSV, the onSaveDocument event is called (as some items might needed to be com-
puted) but the index is not refreshed to avoid degrading performance. This means that the index needs to be updated
manually, possibly by running an agent that re-saves imported documents on a schedule, or by refreshing the database
on a worker ZEO client instance.

9.6. Database 81

Plomino Documentation, Release 1.17

Plomino URLs

Database

OpenDatabase http://server/plone/db/OpenDatabase will open the database home page which ei-
ther the default home page, either the start page (if defined in the database parameters). Equivalent to:

• http://server/plone/db

• http://server/plone/db/view

DatabaseDesign http://server/plone/db/DatabaseDesign will open the database design tab.

DatabaseACL http://server/plone/db/DatabaseACL will open the database ACL tab.

DatabaseReplication http://server/plone/db/DatabaseReplication will open the database
replication tab.

View

OpenView http://server/plone/db/myview/OpenView will display the view. Equivalent to:

• http://server/plone/db/myview

• http://server/plone/db/myview/view

exportCSV http://server/plone/db/myview/exportCSV will download the view content as a CSV
file.

exportXLS http://server/plone/db/myview/exportXLS will download the view content as an Excel
file.

tojson http://server/plone/db/myview/tojson will return the view content in JSON format.

Form

OpenForm http://server/plone/db/myform/OpenForm will render the form. Equivalent to:

• http://server/plone/db/myform

• http://server/plone/db/myform/view

OpenBareForm http://server/plone/db/myform/OpenBareForm will render the form without the
Plone template. It is useful when loading the form through an AJAX call, considering the Plone skin is not
needed in that case, and OpenBareForm will be more performant.

searchDocuments Only for search forms. http://server/plone/db/myform/searchDocuments?
field1=value1 will search and display the search results according the parameters.

tojson http://server/plone/db/myform/tojson will return all the form fields as JSON. http://
server/plone/db/myform/tojson?item=field1 will return the form field field1 as JSON.

Note: the parameter is named item and not field in order to expose the same signature as the document
/tojson URL, so we do not need to test the context in field formulas.

82 Chapter 9. Features reference

Plomino Documentation, Release 1.17

Document

OpenDocument http://server/plone/db/doc1/OpenDocument will render the document in read
mode.

Equivalent to:

• http://server/plone/db/doc1

• http://server/plone/db/doc1/view

http://server/plone/db/doc1/OpenDocument?openwithform=form1 will render the docu-
ment in read mode using the specified form.

EditDocument http://server/plone/db/doc1/EditDocument will render the document in edit
mode.

Equivalent to http://server/plone/db/doc1/edit.

http://server/plone/db/doc1/EditDocument?openwithform=form1 will render the docu-
ment in edit mode using the specified form.

DocumentProperties http://server/plone/db/doc1/DocumentProperties will show all the
document information and stored items values.

AccessControl http://server/plone/db/doc1/AccessControl will show the current access rights
and roles in the context of the document.

delete http://server/plone/db/doc1/deletewill delete the document. http://server/plone/
db/doc1/delete?returnurl=an_url will delete the document and redirect to the specified URL.

getfile http://server/plone/db/doc1/getfile?filename=file1will download the attached file
file1.

deleteAttachment http://server/plone/db/doc1/deleteAttachment?
fieldname=field1&filename=file1 will delete the attached file file1 from the field field1.

tojson http://server/plone/db/doc1/tojson will return all the document stored items as JSON.

http://server/plone/db/doc1/tojson?item=item1 will return the item item1 as JSON. In the
case of a non-stored item (e.g. a Computed for display field), its value will be computed using the matching
field from the document’s form.

http://server/plone/db/doc1/tojson?item=item1&formid=form1 does the same but the
field is explicitly looked up from the form1 form (which is not necessarily the document’s form).

Agent

runAgent http://server/plone/db/agent1/runAgent will execute the agent.

runAgent_async Requires ‘‘plone.app.async‘‘. http://server/plone/db/agent1/runAgentwill ex-
ecute the agent in asynchronous mode.

Agents

It might be useful to launch the same processing from different places in the application (views action, forms action).
To avoid duplicating the code, you can implement the code in an agent.

Select Plomino: agent in the Add item Plone menu, and enter an identifier, a title and the code.

9.8. Agents 83

Plomino Documentation, Release 1.17

This might be useful to run archiving, cleaning, etc. without giving manager rights to regular users.

By default, an agent runs using the current user access right, but it can also run using the designer (the owner) access
right. That way, a regular user might launch an action that would normally require higher privileges if he was doing it
manually.

For instance, if an agent is in charge of archiving documents by moving them from the current database to another
one, if regular users do not have access to the archive db, they would not be able to put some documents in that db. If
the agent is executed as owner, it will not fail.

The agent can be executed (from an action) using the runAgent() method:

db = plominoDocument.getParentDatabase()
db.MyAgent.runAgent()

Note: this method can take REQUEST as parameter (this has to be the REQUEST object), which allows variables in
the query string to be read and redirection to be controlled (using a REDIRECT key on the request).

The agent can also be executed from Python formulas by calling it directly:

db = plominoDocument.getParentDatabase()
db.MyAgent('one', 'two', 'three')

Note: this method can take optional positional arguments. It does not redirect.

If you install plone.app.async on your Zope instance, an agent can also be executed in asynchronous mode.

Resources

A Plomino database contains a resources folder in the ZODB which can contain useful extra assets:

• images or icons you may need to insert in your forms;

• CSS or javascript files;

• ZPT templates (see view template below);

• Python scripts, to provide a code library usable from the different formulas (using the callScriptMethod
method);

• CSV (or other) files containing useful data;

• etc.

To access this folder, go to the Design tab, expand the Others section and click on Resources Folder. It opens the
standard ZMI screen, which allows new elements to be added.

i18n support

By declaring an i18n domain in the database parameters, Plomino translation will be enabled.

When enabled, any text enclosed by __ will be translated according the defined i18n domain.

It will apply to form layout static content:

84 Chapter 9. Features reference

Plomino Documentation, Release 1.17

__What time is it?__

would be rendered as:

What time is it?
¿qué hora es?
Quelle heure est-il ?

(assuming you have an i18n domain containing the msgid “What time is it?” and providing the desired languages)

But it will also apply to any computed field output as well:

return context.getItem('the_hour')+" __hours__"

would be rendered as:

6 hours
6 horas
6 heures

If the text does not match any msgid from the i18n domain, it remains unchanged (but without the enclosing __).

The translation mechanism can be called from a formula using the translate function provided by PlominoUtils,
which can be handy in agents or view columns.

Caching

RAM cache

If your Plomino application contains some time consuming formulas, you can speed up the page display by keeping
the result in RAM cache using getCache and setCache.

Here is an example:

result = db.getCache('my_cache_key')
if not result:

result = make_something_which_cost_CPU(stuff)
db.setCache('my_cache_key', result)

return result

The first time the formula will be called, the make_something_which_cost_CPU will be executed, and the
result will be put into the cache.

Next time the formula is called, the result is directly read from the cache.

As the cache key is a constant (my_cache_key), it will be the same in all the cases (for all the users, in all the pages,
etc.).

But of course, the make_something_which_cost_CPU function might return a different value depending on
the context. If so, you need to produce a cache key that will reflect this context accurately.

For instance, if the result is different according the user, an accurate cache key could be:

cache_key = "result_for_"+context.getCurrentUserId()

or depending on the document:

9.11. Caching 85

Plomino Documentation, Release 1.17

cache_key = "result_for_"+context.id

or anything you might need.

Request cache

Another use case is the repeated usage of a same formula in the same page: sometimes, when rendering a document
using a form, several computed fields make the same computation (typical example: you display a table of values, and
also a bar chart based on those values).

The code itself can be factorized using a script library in the /resources folder, but it will be run twice anyway
when rendering the page, and this might impact performance.

Unfortunately, setCache and getCache might not be relevant because you want the formula to be re-evaluated
every time a user displays the page. In that case, you can use setRequestCache and getRequestCache, so the
cache will be associated with the current request, and will only last as long as the request:

result = db.getRequestCache('my_cache_key')
if not result:

result = make_something_which_cost_CPU(stuff)
db.setRequestCache('my_cache_key', result)

return result

Plomino Element Portlet

A portlet displaying a Plomino form can be added anywhere in a Plone site. It can be useful to show information, like
statistics or charts (thanks to Google Visualization, for example), computed when the page is displayed.

Note: In Plone, when you add a portlet to a page, all of its children pages will contain it too. For example, if you add
a portlet to the main page of the site, it will be displayed in every page of the site. You can prevent this mechanism
in a child page: click on Manage Portlets in this page, find the selector next to the name of the portlet (e.g. Plomino
element portlet), and select guilabel:Block.

You can add a portlet on a page with few steps:

• Click on the link Manage portlets

• In the Add portlet... selector, choose the Plomino element portlet option.

A new page appears, with some fields:

86 Chapter 9. Features reference

Plomino Documentation, Release 1.17

• The header field sets the title of the portlet.

• The database path is the path of a Plomino database containing the form to be displayed. If the base is accessible
at the URL http://example.org/Plone/database, the path is /Plone/database. Since there is
always an exception to a rule, you have to be careful when the site URLs are re-written (e.g. if the Plone site is
behind an Apache server). The path must be the Plone site path, not the public URL.

• Element ID is the form identifier (set at its creation) in the database specified previously.

The new portlet is now displayed alongside the page.

You can control whether the portlet must be displayed or not by adding a field named Plomino_Portlet_Availability
which formula must return True or False.

Extending Plomino with plugins

Plomino provides a set of utility functions in PlominoUtils (DateToString, asUnicode, etc.).

In addition, custom Plomino utilities can be declared in a custom package, and they will be available from any Plomino
formula.

9.13. Extending Plomino with plugins 87

Plomino Documentation, Release 1.17

Example:

Create the utility methods in your extension module (e.g. mypackage.mymodule):

import simplejson as json

def jsonify(obj):
return json.dumps(obj)

def dejsonify(s):
return json.loads(s)

Create a class to declare them:

class MyUtils:
module = "mypackage.mymodule"
methods = ['jsonify', 'dejsonify']

Declare the module as safe so it can be called from Python Scripts (all Plomino formula are Python Scripts):

from Products.PythonScripts.Utility import allow_module

allow_module("mypackage.mymodule")

And register it with Plomino in a configure.zcml file:

<utility
name="MyUtils"
provides="Products.CMFPlomino.interfaces.IPlominoUtils"
component="mypackage.mymodule"
/>

Now, jsonify and dejsonify can be used in any Plomino formula.

88 Chapter 9. Features reference

CHAPTER 10

Plomino class reference

Non-exhaustive list of the classes’ methods.

PlominoDatabase

Note: The includes methods inherited from base classes.

callScriptMethod(self, scriptname, methodname, *args) Calls a method named
methodname in a file named scriptname, stored in the resources folder. If the called method
allows it, you may pass some arguments.

createDocument(self, docid=None) Returns a new empty document.

deleteDocument(self, doc) Delete the document from database.

deleteDocuments(self, ids=None, massive=True) Batch delete documents from database. If
massive is True, the onDelete formula and index updating are not performed (use refreshDB to up-
date).

getAgent(self, agentid) Return a PlominoAgent, or None.

getAgents(self) Returns all the PlominoAgent objects stored in the database.

getAllDocuments(self) Returns catalog brains for all the PlominoDocument objects stored in the database.

getCurrentMember(self) Returns the current Plone member.

getCurrentUserRights(self) Returns the current user’s access rights.

getCurrentUserRoles(self) returns the current user’s roles.

getDocument(self, docid) Returns the PlominoDocument object corresponding to the identifier, or None.

getForm(self, formname) returns the PlominoForm object corresponding to the identifier.

getForms(self) returns all the PlominoForm objects stored in the database.

89

Plomino Documentation, Release 1.17

getIndex(self) returns the PlominoIndex object.

getPortalGroups(self) returns the Plone site groups.

getPortalMembers(self) returns the Plone site members.

getPortalMembersIds(self) returns the Plone site member ids.

getPortalMembersGroupsIds(self) returns the Plone site groups ids and all the Plone site members ids.

getUserRoles(self) returns all the roles declared in the database.

getUsersForRight(self, right) returns the users declared in the ACL and having the given right.

getUsersForRoles(self,role) returns the users declared in the ACL and having the given role.

getView(self, viewname) return the PlominoView object corresponding to the identifier.

getViews(self) returns all the PlominoView objects stored in the database.

hasUserRole(self, userid, role) Returns True if the specified user id has the given role.

processImportAPI(self, formName, separator, fileToImport, file_encoding='utf-8')
Import a CSV file to create document using the specified form.

isCurrentUserAuthor(self, doc) returns True if the current user is author of the given document or has
the PlominoAuthor right.

refreshDB(self) refresh the database index and the formulas.

writeMessageOnPage(self, infoMsg, REQUEST, ifMsgEmpty = '', error = False)
displays a standard Plone status message. The REQUEST parameter is mandatory. Most of the time,
plominoDocument.REQUEST will be the correct value. ifMsgEmpty is the default message to display
if infoMsg is empty. If error is False, the message displays as an informational message; if True, it
displays as an error message.

PlominoDocument

delete(self, REQUEST=None) deletes the document, and if REQUEST contains a key named returnurl,
uses its value to redirect the client.

deleteAttachment(self, REQUEST) remove file object and update corresponding item value.

getfile(self, filename=None, REQUEST=None) return the file corresponding to the given filename.

getFilenames(self) return the filenames of all the files stored with the document.

getForm(self) returns the form given by the view form formula (if the document is opened from a view and if
the view has a form formula), else returns the form given by the document’s Form item.

getItem(self, name, default='') returns the item value if it exists, else returns the default value (an
empty string if not provided).

getItemClassname(self, name) returns the class name of the item .

getItems(self) returns the names of all the items existing in the document.

getParentDatabase(self) Normally used via acquisition by Plomino formulas operating on documents,
forms, etc.

getRenderedItem(self, itemname, form=None, convertattachments=False) returns the
item value using the rendering corresponding to the field type defined in the form (if form is None, it uses the
form returned by getForm()). If convertattachments is True, FileAttachments items are converted
to text (if possible).

90 Chapter 10. Plomino class reference

Plomino Documentation, Release 1.17

hasItem(self, name) returns True if the item exists in the document.

isAuthor(self) returns True if the current user is author of the document or has the PlominoAuthor right.

isEditMode(self) returns True is the document is being edited, False if it is being read. Note the same
method is available in PlominoForm, so it can be used transparently in any formula to know if the document is
being edited or not.

isNewDocument(self) returns False (because an existing document is necessarily not new). Note the same
method is available in PlominoForm (and returns True), so it can be used transparently in any formula to know
if the document is being created or not.

openWithForm(self, form, editmode=False) display the document using the given form’s layout (but
first, check if the user has proper access rights).

removeItem(self, name) remove the item.

save(self, form=None, creation=False, refresh_index=True) refresh the computed fields
and re-index the document in the Plomino index and in the Plone portal_catalog (only if
refresh_index is True; False might be useful to improve the performance, but a refreshDatabase
will be needed). It uses the field’s formulas defined in the provided form (by default, it uses the form returned
by getForm()).

send(self, recipients, title, form=None) send the document by mail to the recipients. The docu-
ment is rendered in HTML using the provided form (by default it uses the form returned by getForm()).

setItem(self,name,value) set the value (if the item does not exist, it is created).

PlominoForm

getFormName(self) returns the form id.

getParentDatabase(self) returns the PlominoDatabase object which contains the form.

isEditMode(self) returns True.

Note: the same method is available in PlominoDocument, so it can be used transparently in any formula to
know if the document is being edit or not.

isNewDocument(self) returns True (when the context is a form, it is necessarily a new doc).

Note: the same method is available in PlominoDocument (and returns False), so it can be used transparently in
any formula to know if the document is being created or not.

PlominoView

exportCSV(self, REQUEST=None) returns the columns values in CSV format. If REQUEST is not None,
download is proposed to the user.

getAllDocuments(self) returns all the documents which match the Selection Formula. Documents are sorted
according the sort column (if defined).

getDocumentsByKey(self, key) returns all documents for which the value of the column used as sort key
matches the given key.

10.3. PlominoForm 91

Plomino Documentation, Release 1.17

getParentDatabase(self) returns the PlominoDatabase object which contains the view.

getViewName(self) returns the view id.

PlominoIndex

dbsearch(self, request, sortindex, reverse=0) searches the documents corresponding to the re-
quest (see ZCatalog reference). The returned objects are ZCatalog brains pointing to the documents (see ZCat-
alog reference).

getKeyUniqueValues(self, key) returns the list of distinct values for an indexed field.

getParentDatabase(self) returns the PlominoDatabase object which contains the index.

refresh(self) refresh the index.

PlominoUtils

Note: PlominoUtils is imported for any formula execution, its methods are always available (importing the module
is not needed).

Another module with some useful methods is Products.PythonScripts.standard, which can be imported
if needed.

actual_context(context, search="PlominoDocument") return the actual context from the request,
it will drill into the path until it find a context matching the searched class. Useful in portlet context

actual_path(context) return the actual path from the request. Useful in portlet context

array_to_csv(array, delimiter='\t', quotechar='"') Convert array (a list of lists) to a CSV
string.

asList(x) If not list, return x in a single-element list. .. note:: If x is None, this will return [None].

asUnicode(s) Make sure s is unicode, decode according to site encoding if needed.

csv_to_array(csvcontent, delimiter='\t', quotechar='"') Convert CSV to array.
csvcontent may be a string or a file.

DateRange(d1, d2) returns the dates of all the days between the 2 dates.

DateToString(d, format=None, db=None) Converts a date to a string. If db is passed, use the database
date format.

htmlencode(s) Replaces unicode characters with their corresponding HTML entities.

isDocument(object) Test if the object is a PlominoDocument. Useful to distinguish a document context
from a form context.

json_dumps(obj) Return the object as a string using the JSON format. Example:

>>> json_dumps({"a": [1, 2, "This is a 'quote'"], "b": 0.098098})
'{"a": [1, 2, "This is a \'quote\'"], "b": 0.098098}'

json_loads(s) Build an object from a JSON string. Example:

92 Chapter 10. Plomino class reference

Plomino Documentation, Release 1.17

>>> json_loads('{"a": [1, 2, "This is a \'quote\'"], "b": 0.098098}')
{u'a': [1, 2, u"This is a 'quote'"], u'b': 0.098098}

Log(message, summary='', severity='info', exc_info=False) Write a message to the server
event log.

Now() returns current date and time as a DateTime object.

open_url(url, asFile=False, data=None) Load the corresponding url, and retrurn the resulting string
(or a stream if asFile is True). If data is not None, it will produce a POST request (and data will be url encoded
if it is not a string). IMPORTANT: By default, open_url raises an Unauthorized exception. If the requested
domain (note: it might also be a local path) has been declared safe by an local module, it retrieves the content
from url. To declare a domain as safe:

from zope.interface import implements
from zope.component import provideUtility
from Products.CMFPlomino.interfaces import IPlominoSafeDomains

class MySafeDomains:
implements(IPlominoSafeDomains)

domains = [
"http://api.geonames.org",
"/var/public"

]
provideUtility(MySafeDomains, IPlominoSafeDomains)

PlominoTranslate(message, context, domain='CMFPlomino') translate the given message using
the Plone i18n engine (using the given domain).

sendMail(db, recipients, title, message_in, sender=None, cc=None, bcc=None, immediate=False, msg_format='html')
Send a mail to the recipients. If sender is None, it will use the current user mail address. By default it accepts a
html message, you can submit text instead and supply msg_format=’text’.

StringToDate(str_d, format='%Y-%m-%d', db=None) Converts a string to a date. If db is passed,
use the database date format. If format=None, guess.

PlominoTranslate(msgid, context, domain='CMFPlomino') Look up the translation for msgid in
the current language.

urlencode(h) Convert a dictionary into a URL querystring (a key=value& string). Example:

>>> urlencode({"option": 5, "article": "9879879"})
'article=9879879&option=5'

urlquote(string) Replace special characters in a string using the %xx escape. Example:

>>> urlquote('runAgent?REDIRECT=True&action=accept')
'runAgent%3FREDIRECT%3DTrue%26action%3Daccept'

userFullname(db, userid) returns the user full name.

userInfo(db, userid) returns the Member object corresponding to the user id (it may be used to get the user
email address for instance).

10.6. PlominoUtils 93

Plomino Documentation, Release 1.17

PlominoAgent

getParentDatabase(self) returns the PlominoDatabase object which contains the agent.

runAgent(self, REQUEST=None) runs the agent. If REQUEST is provided, there is a redirection to the
database home page, unless the REQUEST contains a REDIRECT key If so, the formula returned value is
used as the redirection URL.

__call__(*args) if agents are called from Python code, they can take positional arguments.

94 Chapter 10. Plomino class reference

CHAPTER 11

Indices and tables

Glossary

This is a glossary for Plomino-specific terms. It is still heavily under construction.

Action An Action in Plomino renders a UI element that allows the user to trigger some processing.

Agent An Agent object executes some code as a configured user.

Column A Column defines a value that should be computed for each Document that matches a View.

Content Rules A Plone feature allowing code or events to be configures upon events such as object creation or
modification.

Document A Document in Plomino contains named Item objects, that are rendered by View and Form objects.

Field A Field object, which lives in a Form, renders a Widget, sometimes accepts input, and triggers events.

Form A Form object, containing fields, edits Document objects according to the fields and events configured on the
form.

Formula In the context of Plomino, a formula is a snippet of restricted Python code executed in the context of a field
or event.

Hide-when A formula that determines whether an action or section of a form is rendered.

Item An Item stored a value on a Document.

Sub-form A Form object rendered as part of another form.

View A View defines a group of Documents related by a selection formula.

ZMI The Zope Management Interface.

ZODB The Zope Object Database: transparent persistence for Python objects, since 2002. (Before 2002, it was part
of Zope.)

95

Plomino Documentation, Release 1.17

Automatically generated TODO list

The following list is automatically generated from .. TODO:: directives in the text.

See http://sphinx.pocoo.org/ext/todo.html for details.

TODO items

• genindex

• modindex

• search

96 Chapter 11. Indices and tables

http://sphinx.pocoo.org/ext/todo.html

Index

A
Action, 95
Agent, 95

C
Column, 95
Content Rules, 95

D
Document, 95

F
Field, 95
Form, 95
Formula, 95

H
Hide-when, 95

I
Item, 95

S
Sub-form, 95

V
View, 95

Z
ZMI, 95
ZODB, 95

97

	About this Document
	Introduction
	Background and highlevel overview
	Positioning
	A closer look
	Grouping documents
	Security
	Barely-repeatable processes, workflow
	Workflow
	Use cases
	Digging deeper
	Ideas for improvement

	Installation
	Prerequisites
	Deploy Plomino in your Plone site
	Deploy Plomino development version

	Concepts
	Plomino database
	Design
	Forms
	Documents
	Views

	Build a simple Plomino application
	Create a Plomino database
	Add a form
	Create the layout and add fields
	Use the form
	Explore the database design
	Change the document title
	Change the document id
	Add a view
	Add a view manually
	Add more views
	Dynamic view
	Add a search form
	About and Using pages

	Access control
	Standard Plomino access rights
	Generic users
	Roles
	Manage the access rights
	Application-level access control

	Fields reference
	General parameters
	Field indexing
	Type-specific parameters

	Features reference
	Formulas
	Actions
	Fields
	Forms
	Views
	Database
	Plomino URLs
	Agents
	Resources
	i18n support
	Caching
	Plomino Element Portlet
	Extending Plomino with plugins

	Plomino class reference
	PlominoDatabase
	PlominoDocument
	PlominoForm
	PlominoView
	PlominoIndex
	PlominoUtils
	PlominoAgent

	Indices and tables
	Glossary
	Automatically generated TODO list

